- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Bellinger, Earl P (1)
-
Griffith, Emily J (1)
-
Hasselquist, Sten (1)
-
Holtzman, Jon A (1)
-
Imig, Julie (1)
-
Lu, YuxiLucy (1)
-
Saydjari, Andrew K (1)
-
Stone-Martinez, Alexander (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Understanding the ages of stars is crucial for unraveling the formation history and evolution of our Galaxy. Traditional methods for estimating stellar ages from spectroscopic data often struggle with providing appropriate uncertainty estimations and are severely constrained by the parameter space. In this work, we introduce a new approach using normalizing flows—a type of deep generative model—to estimate stellar ages for evolved stars with improved accuracy and robust uncertainty characterization. The model is trained on stellar masses for evolved stars derived from asteroseismology and predicts the relationship between the carbon and nitrogen abundances of a given star and its age. Unlike standard neural network techniques, normalizing flows enable the recovery of full likelihood distributions for individual stellar ages, offering a richer and more informative perspective on uncertainties. Our method yields age estimations for 378,720 evolved stars and achieves a typical absolute age uncertainty of approximately 2 Gyr. By intrinsically accounting for the coverage and density of the training data, our model ensures that the resulting uncertainties reflect both the inherent noise in the data and the completeness of the sampled parameter space. Applying this method to data from the fifth-generation Sloan Digital Sky Survey Milky Way Mapper, we have produced the largest stellar age catalog for evolved stars to date.more » « lessFree, publicly-accessible full text available July 3, 2026
An official website of the United States government
